viernes, 5 de diciembre de 2014

1.4 Algoritmos de Booth para la multiplicación y división en binario


¿Qué es el algoritmo de Booth?

 El algoritmo de Booth es un procedimiento algorítmico para realizar la multiplicación de dos números con signo, expresados en base binaria en notación complemento a dos. El algoritmo fue inventado por Andrew Donald Booth en 1950 mientras que hacía investigación sobre cristalografía en la universidad de Bloomsbury, en Birkbeck, Londres. Booth usaba calculadoras de escritorio que eran más rápidas en el desplazamiento que sumando, y creó el algoritmo para aumentar su velocidad. El algoritmo de Booth es de interés en el estudio de la arquitectura de computadoras.

 PROCEDIMIENTO:

Debemos saber que un número binario está formado por bits de ceros y unos, y que se puede traducir a decimal fácilmente de la siguiente forma: Sabiendo que la posición de cada bit es 2^n (elevado a n) y partimos de n=0 de derecha a izquierda, sólo queda realizar la suma total de multiplicar por dicho bit, en este caso, lo que muestro a continuación: 0•27+1•26+0•25+1•24+0•23+1•22+1•21+0•20 = 86. También debemos saber que el complemento a uno de un número binario es cambiar sus ceros por unos, y sus unos por ceros (complementar): (010010 -> ca1: 101101) y que el complemento a dos de un número binario es el resultado de sumar 1 al complemento a uno de dicho número binario (NOTA: En el Ca1 sólo se complementa si el número es negativo): Realizar una suma con dos números binarios es tarea fácil, pero la multiplicación resulta algo más complicada. Con el algoritmo de Booth, resulta mucho más sencillo de implementar. Partimos del ejemplo de la multiplicación 6•2=12: Como se puede ver en la imagen superior, partiendo de los números binarios de la multiplicación 6•2 (multiplicando y multiplicador) creamos tres nuevos números binarios del doble de tamaño (16 en el ejemplo): A, S y P. Partiendo del número P (producto) comenzamos a comparar los últimos 2 bits de la derecha, siguiendo los casos base del recuadro: Se realizará esta comparación 8 veces en este ejemplo (número de bits de los operandos) y al final de cada comparación, realizamos un desplazamiento de un bit hacia la derecha, manteniendo el último bit de la izquierda, y descartando el último bit del lado contrario. Si hacemos una traza paso a paso nos quedarían los siguientes resultados: Finalmente obtenemos el número en binario resultante (12 en este ejemplo), descartando el bit extra que hemos añadido al principio del procedimiento y que se encuentra en el extremo a la derecha. 

1 comentario:

Unknown dijo...

Este Blog es pésimo el color de fondo no deja ver las letras, y en serio sabes de esto jajaj que pena.