Considere dos conjuntos arbitrarios A y B. El conjunto de todas las parejas ordenadas (a, b) en donde a ∈ A y b ∈B se llama producto o producto cartesiano de A y B.
La definición de producto cartesiano puede extenderse fácilmente al caso de más de dos conjuntos.
Se llama producto cartesiano de dos conjuntos A y B y se representa A x B, al conjunto de pares ordenados (a, b), tales que el primer elemento pertenece al primer conjunto y el segundo elemento al segundo conjunto. Es decir:
A x B = {(a, b) / a ∈ A, b ∈ B} El producto cartesiano, en general, no es conmutativo. Es decir: A x B ≠ B x A.
Puede ocurrir que los conjuntos A y B sean coincidentes.
EJEMPLO:
Si A = {a, b, c} y B = {1, 2, 3, 4}, el producto cartesiano es:
A x B = {(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4)}
Se puede representar gráficamente por medio de puntos en un plano, como se muestra a continuación. Aquí, cada punto P representa una pareja ordenada (a, b) de números reales y viceversa; la línea vertical a través de P encuentra al eje x en a, y la línea horizontal a través de P encuentra el eje y en b.
A esta representación se le conoce como diagrama cartesiano.
Hay otra manera de visualizar una relación y es a través de una representación gráfica, donde se destaquen los puntos en el plano que pertenecen a A y los puntos que pertenecen a B. Se trazan flechas que indican la relación que existe entre cada elemento del conjunto A y su correspondiente en el conjunto B. A esta representación gráfica se le conoce como un diagrama de flechas.
No hay comentarios.:
Publicar un comentario