En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.
La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.
Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c,..., x, y, z. que se puede escribir así:
{A, b, c,..., x, y, z}
El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.
Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto {a, b, c} también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }
En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto {b, b, b, d, d} simplemente será {b, d}.
No hay comentarios.:
Publicar un comentario